Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
iScience ; 27(3): 109209, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439972

RESUMO

GWAS focuses on significance loosing false positives; machine learning probes sub-significant features relying on predictivity. Yet, these are far from orthogonal. We sought to explore how these inform each other in sub-genome-wide significant situations to define relevance for predictive features. We introduce the SVM-based RubricOE that selects heavily cross-validated feature sets, and LDpred2 PRS as a strong contrast to SVM, to explore significance and predictivity. Our Alzheimer's test case notoriously lacks strong genetic signals except for few very strong phenotype-SNP associations, which suits the problem we are exploring. We found that the most significant SNPs among ML and PRS-selected SNPs captured most of the predictivity, while weaker associations tend also to contribute weakly to predictivity. SNPs with weak associations tend not to contribute to predictivity, but deletion of these features does not injure it. Significance provides a ranking that helps identify weakly predictive features.

2.
Cancer Discov ; 14(2): 227-239, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37916958

RESUMO

PIK3CA mutations occur in ∼8% of cancers, including ∼40% of HR-positive breast cancers, where the PI3K-alpha (PI3Kα)-selective inhibitor alpelisib is FDA approved in combination with fulvestrant. Although prior studies have identified resistance mechanisms, such as PTEN loss, clinically acquired resistance to PI3Kα inhibitors remains poorly understood. Through serial liquid biopsies and rapid autopsies in 39 patients with advanced breast cancer developing acquired resistance to PI3Kα inhibitors, we observe that 50% of patients acquire genomic alterations within the PI3K pathway, including PTEN loss and activating AKT1 mutations. Notably, although secondary PIK3CA mutations were previously reported to increase sensitivity to PI3Kα inhibitors, we identified emergent secondary resistance mutations in PIK3CA that alter the inhibitor binding pocket. Some mutations had differential effects on PI3Kα-selective versus pan-PI3K inhibitors, but resistance induced by all mutations could be overcome by the novel allosteric pan-mutant-selective PI3Kα-inhibitor RLY-2608. Together, these findings provide insights to guide strategies to overcome resistance in PIK3CA-mutated cancers. SIGNIFICANCE: In one of the largest patient cohorts analyzed to date, this study defines the clinical landscape of acquired resistance to PI3Kα inhibitors. Genomic alterations within the PI3K pathway represent a major mode of resistance and identify a novel class of secondary PIK3CA resistance mutations that can be overcome by an allosteric PI3Kα inhibitor. See related commentary by Gong and Vanhaesebroeck, p. 204 . See related article by Varkaris et al., p. 240 . This article is featured in Selected Articles from This Issue, p. 201.


Assuntos
Neoplasias da Mama , Fosfatidilinositol 3-Quinases , Humanos , Feminino , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fulvestranto , Inibidores de Fosfoinositídeo-3 Quinase , Classe I de Fosfatidilinositol 3-Quinases/genética , Mutação
3.
Nature ; 623(7987): 608-615, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938768

RESUMO

Cell therapies have yielded durable clinical benefits for patients with cancer, but the risks associated with the development of therapies from manipulated human cells are understudied. For example, we lack a comprehensive understanding of the mechanisms of toxicities observed in patients receiving T cell therapies, including recent reports of encephalitis caused by reactivation of human herpesvirus 6 (HHV-6)1. Here, through petabase-scale viral genomics mining, we examine the landscape of human latent viral reactivation and demonstrate that HHV-6B can become reactivated in cultures of human CD4+ T cells. Using single-cell sequencing, we identify a rare population of HHV-6 'super-expressors' (about 1 in 300-10,000 cells) that possess high viral transcriptional activity, among research-grade allogeneic chimeric antigen receptor (CAR) T cells. By analysing single-cell sequencing data from patients receiving cell therapy products that are approved by the US Food and Drug Administration2 or are in clinical studies3-5, we identify the presence of HHV-6-super-expressor CAR T cells in patients in vivo. Together, the findings of our study demonstrate the utility of comprehensive genomics analyses in implicating cell therapy products as a potential source contributing to the lytic HHV-6 infection that has been reported in clinical trials1,6-8 and may influence the design and production of autologous and allogeneic cell therapies.


Assuntos
Linfócitos T CD4-Positivos , Herpesvirus Humano 6 , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Ativação Viral , Latência Viral , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Ensaios Clínicos como Assunto , Regulação Viral da Expressão Gênica , Genômica , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/isolamento & purificação , Herpesvirus Humano 6/fisiologia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Encefalite Infecciosa/complicações , Encefalite Infecciosa/virologia , Receptores de Antígenos Quiméricos/imunologia , Infecções por Roseolovirus/complicações , Infecções por Roseolovirus/virologia , Análise da Expressão Gênica de Célula Única , Carga Viral
4.
medRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808694

RESUMO

While the development of multiple primary tumors in smokers with lung cancer can be attributed to carcinogen-induced field cancerization, the occurrence of multiple primary tumors in individuals with EGFR-mutant lung cancer who lack known environmental exposures remains unexplained. We identified ten patients with early-stage, resectable non-small cell lung cancer who presented with multiple anatomically distinct EGFR-mutant tumors. We analyzed the phylogenetic relationships among multiple tumors from each patient using whole exome sequencing (WES) and hypermutable poly-guanine (poly-G) repeat genotyping, as orthogonal methods for lineage tracing. In two patients, we identified germline EGFR variants, which confer moderately enhanced signaling when modeled in vitro. In four other patients, developmental mosaicism is supported by the poly-G lineage tracing and WES, indicating a common non-germline cell-of-origin. Thus, developmental mosaicism and germline variants define two distinct mechanisms of genetic predisposition to multiple EGFR-mutant primary tumors, with implications for understanding their etiology and clinical management.

5.
Blood ; 142(5): 421-433, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37146250

RESUMO

Although BCL2 mutations are reported as later occurring events leading to venetoclax resistance, many other mechanisms of progression have been reported though remain poorly understood. Here, we analyze longitudinal tumor samples from 11 patients with disease progression while receiving venetoclax to characterize the clonal evolution of resistance. All patients tested showed increased in vitro resistance to venetoclax at the posttreatment time point. We found the previously described acquired BCL2-G101V mutation in only 4 of 11 patients, with 2 patients showing a very low variant allele fraction (0.03%-4.68%). Whole-exome sequencing revealed acquired loss(8p) in 4 of 11 patients, of which 2 patients also had gain (1q21.2-21.3) in the same cells affecting the MCL1 gene. In vitro experiments showed that CLL cells from the 4 patients with loss(8p) were more resistant to venetoclax than cells from those without it, with the cells from 2 patients also carrying gain (1q21.2-21.3) showing increased sensitivity to MCL1 inhibition. Progression samples with gain (1q21.2-21.3) were more susceptible to the combination of MCL1 inhibitor and venetoclax. Differential gene expression analysis comparing bulk RNA sequencing data from pretreatment and progression time points of all patients showed upregulation of proliferation, B-cell receptor (BCR), and NF-κB gene sets including MAPK genes. Cells from progression time points demonstrated upregulation of surface immunoglobulin M and higher pERK levels compared with those from the preprogression time point, suggesting an upregulation of BCR signaling that activates the MAPK pathway. Overall, our data suggest several mechanisms of acquired resistance to venetoclax in CLL that could pave the way for rationally designed combination treatments for patients with venetoclax-resistant CLL.


Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Humanos , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Sequenciamento do Exoma , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2
6.
Clin Cancer Res ; 29(12): 2226-2238, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37053197

RESUMO

PURPOSE: mAbs targeting the PD-1/PD-L1 immune checkpoint are powerful tools to improve the survival of patients with cancer. Understanding the molecular basis of clinical response to these treatments is critical to identify patients who can benefit from this immunotherapy. In this study, we investigated long noncoding RNA (lncRNA) expression in patients with cancer treated with anti-PD-1/PD-L1 immunotherapy. EXPERIMENTAL DESIGN: lncRNA expression profile was analyzed in one cohort of patients with melanoma and two independent cohorts of patients with glioblastoma (GBM) undergoing anti-PD-1/PD-L1 immunotherapy. Single-cell RNA-sequencing analyses were performed to evaluate lncRNA expression in tumor cells and tumor-infiltrating immune cells. RESULTS: We identified the lncRNA NEAT1 as commonly upregulated between patients with melanoma with complete therapeutic response and patients with GBM with longer survival following anti-PD-1/PD-L1 treatment. Gene set enrichment analyses revealed that NEAT1 expression was strongly associated with the IFNγ pathways, along with downregulation of cell-cycle-related genes. Single-cell RNA-sequencing analyses revealed NEAT1 expression across multiple cell types within the GBM microenvironment, including tumor cells, macrophages, and T cells. High NEAT1 expression levels in tumor cells correlated with increased infiltrating macrophages and microglia. In these tumor-infiltrating myeloid cells, we found that NEAT1 expression was linked to enrichment in TNFα/NFκB signaling pathway genes. Silencing NEAT1 suppressed M1 macrophage polarization and reduced the expression of TNFα and other inflammatory cytokines. CONCLUSIONS: These findings suggest an association between NEAT1 expression and patient response to anti-PD-1/PD-L1 therapy in melanoma and GBM and have important implications for the role of lncRNAs in the tumor microenvironment.


Assuntos
Glioblastoma , Melanoma , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Inibidores de Checkpoint Imunológico/farmacologia , Fator de Necrose Tumoral alfa , Antígeno B7-H1/genética , Relevância Clínica , Melanoma/genética , Glioblastoma/patologia , Microambiente Tumoral
7.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36869848

RESUMO

Sampling circulating tumor DNA (ctDNA) using liquid biopsies offers clinically important benefits for monitoring cancer progression. A single ctDNA sample represents a mixture of shed tumor DNA from all known and unknown lesions within a patient. Although shedding levels have been suggested to hold the key to identifying targetable lesions and uncovering treatment resistance mechanisms, the amount of DNA shed by any one specific lesion is still not well characterized. We designed the Lesion Shedding Model (LSM) to order lesions from the strongest to the poorest shedding for a given patient. By characterizing the lesion-specific ctDNA shedding levels, we can better understand the mechanisms of shedding and more accurately interpret ctDNA assays to improve their clinical impact. We verified the accuracy of the LSM under controlled conditions using a simulation approach as well as testing the model on three cancer patients. The LSM obtained an accurate partial order of the lesions according to their assigned shedding levels in simulations and its accuracy in identifying the top shedding lesion was not significantly impacted by number of lesions. Applying LSM to three cancer patients, we found that indeed there were lesions that consistently shed more than others into the patients' blood. In two of the patients, the top shedding lesion was one of the only clinically progressing lesions at the time of biopsy suggesting a connection between high ctDNA shedding and clinical progression. The LSM provides a much needed framework with which to understand ctDNA shedding and to accelerate discovery of ctDNA biomarkers. The LSM source code has been available in the IBM BioMedSciAI Github (https://github.com/BiomedSciAI/Geno4SD).


Assuntos
DNA Tumoral Circulante , Neoplasias , Humanos , Biomarcadores Tumorais/genética , Neoplasias/tratamento farmacológico , DNA de Neoplasias/genética , DNA Tumoral Circulante/genética , Biópsia , Mutação
9.
Blood Adv ; 7(9): 1929-1943, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36287227

RESUMO

Covalent inhibitors of Bruton tyrosine kinase (BTK) have transformed the therapy of chronic lymphocytic leukemia (CLL), but continuous therapy has been complicated by the development of resistance. The most common resistance mechanism in patients whose disease progresses on covalent BTK inhibitors (BTKis) is a mutation in the BTK 481 cysteine residue to which the inhibitors bind covalently. Pirtobrutinib is a highly selective, noncovalent BTKi with substantial clinical activity in patients whose disease has progressed on covalent BTKi, regardless of BTK mutation status. Using in vitro ibrutinib-resistant models and cells from patients with CLL, we show that pirtobrutinib potently inhibits BTK-mediated functions including B-cell receptor (BCR) signaling, cell viability, and CCL3/CCL4 chemokine production in both BTK wild-type and C481S mutant CLL cells. We demonstrate that primary CLL cells from responding patients on the pirtobrutinib trial show reduced BCR signaling, cell survival, and CCL3/CCL4 chemokine secretion. At time of progression, these primary CLL cells show increasing resistance to pirtobrutinib in signaling inhibition, cell viability, and cytokine production. We employed longitudinal whole-exome sequencing on 2 patients whose disease progressed on pirtobrutinib and identified selection of alternative-site BTK mutations, providing clinical evidence that secondary BTK mutations lead to resistance to noncovalent BTKis.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Tirosina Quinase da Agamaglobulinemia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Quimiocina CCL4/genética , Quimiocina CCL4/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Mutação
10.
Pac Symp Biocomput ; 28: 198-208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36540977

RESUMO

Polygenic risk scores (PRS) are increasingly used to estimate the personal risk of a trait based on genetics. However, most genomic cohorts are of European populations, with a strong under-representation of non-European groups. Given that PRS poorly transport across racial groups, this has the potential to exacerbate health disparities if used in clinical care. Hence there is a need to generate PRS that perform comparably across ethnic groups. Borrowing from recent advancements in the domain adaption field of machine learning, we propose FairPRS - an Invariant Risk Minimization (IRM) approach for estimating fair PRS or debiasing a pre-computed PRS. We test our method on both a diverse set of synthetic data and real data from the UK Biobank. We show our method can create ancestry-invariant PRS distributions that are both racially unbiased and largely improve phenotype prediction. We hope that FairPRS will contribute to a fairer characterization of patients by genetics rather than by race.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Biologia Computacional , Fatores de Risco , Fenótipo , Herança Multifatorial
11.
Nat Microbiol ; 7(12): 2128-2150, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36443458

RESUMO

Despite advances in sequencing, lack of standardization makes comparisons across studies challenging and hampers insights into the structure and function of microbial communities across multiple habitats on a planetary scale. Here we present a multi-omics analysis of a diverse set of 880 microbial community samples collected for the Earth Microbiome Project. We include amplicon (16S, 18S, ITS) and shotgun metagenomic sequence data, and untargeted metabolomics data (liquid chromatography-tandem mass spectrometry and gas chromatography mass spectrometry). We used standardized protocols and analytical methods to characterize microbial communities, focusing on relationships and co-occurrences of microbially related metabolites and microbial taxa across environments, thus allowing us to explore diversity at extraordinary scale. In addition to a reference database for metagenomic and metabolomic data, we provide a framework for incorporating additional studies, enabling the expansion of existing knowledge in the form of an evolving community resource. We demonstrate the utility of this database by testing the hypothesis that every microbe and metabolite is everywhere but the environment selects. Our results show that metabolite diversity exhibits turnover and nestedness related to both microbial communities and the environment, whereas the relative abundances of microbially related metabolites vary and co-occur with specific microbial consortia in a habitat-specific manner. We additionally show the power of certain chemistry, in particular terpenoids, in distinguishing Earth's environments (for example, terrestrial plant surfaces and soils, freshwater and marine animal stool), as well as that of certain microbes including Conexibacter woesei (terrestrial soils), Haloquadratum walsbyi (marine deposits) and Pantoea dispersa (terrestrial plant detritus). This Resource provides insight into the taxa and metabolites within microbial communities from diverse habitats across Earth, informing both microbial and chemical ecology, and provides a foundation and methods for multi-omics microbiome studies of hosts and the environment.


Assuntos
Microbiota , Animais , Microbiota/genética , Metagenoma , Metagenômica , Planeta Terra , Solo
12.
Exp Biol Med (Maywood) ; 247(22): 2015-2024, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36398440

RESUMO

Biological pathways play a crucial role in the properties of diseases and are important in drug discovery. Identifying the logical relationships among distinctive phenotypic clusters could reveal possible connections to the underlying pathways. However, this process is challenging since clinical phenotypes are often available through unstructured electronic health records. Moreover, in the absence of a standardized questionnaire, there could be bias among physicians toward selecting certain medical terms. In this article, we develop an efficient pipeline to address these challenges and help practitioners to reveal the pathways associated with the disease. We use topological data analysis and redescriptions and propose a pipeline of four phases: (1) pre-processing the clinical notes to extract the salient concepts, (2) constructing a feature space of the patients to characterize the extracted concepts, (3) leveraging the topological properties to distill the available knowledge and visualize the extracted features, and finally, (4) investigating the bias in the clinical notes of the selected features and identify possible pathways. Our experiments on a publicly available dataset of COVID-19 clinical notes testify that our pipeline can indeed extract meaningful pathways.


Assuntos
COVID-19 , Humanos , Registros Eletrônicos de Saúde , Fenótipo , Inquéritos e Questionários
13.
Nat Med ; 28(9): 1848-1859, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36097221

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy has revolutionized the treatment of hematologic malignancies. Approximately half of patients with refractory large B cell lymphomas achieve durable responses from CD19-targeting CAR-T treatment; however, failure mechanisms are identified in only a fraction of cases. To gain new insights into the basis of clinical response, we performed single-cell transcriptome sequencing of 105 pretreatment and post-treatment peripheral blood mononuclear cell samples, and infusion products collected from 32 individuals with large B cell lymphoma treated with either of two CD19 CAR-T products: axicabtagene ciloleucel (axi-cel) or tisagenlecleucel (tisa-cel). Expansion of proliferative memory-like CD8 clones was a hallmark of tisa-cel response, whereas axi-cel responders displayed more heterogeneous populations. Elevations in CAR-T regulatory cells among nonresponders to axi-cel were detected, and these populations were capable of suppressing conventional CAR-T cell expansion and driving late relapses in an in vivo model. Our analyses reveal the temporal dynamics of effective responses to CAR-T therapy, the distinct molecular phenotypes of CAR-T cells with differing designs, and the capacity for even small increases in CAR-T regulatory cells to drive relapse.


Assuntos
Produtos Biológicos , Linfoma Difuso de Grandes Células B , Receptores de Antígenos Quiméricos , Antígenos CD19 , Humanos , Imunoterapia Adotiva/efeitos adversos , Leucócitos Mononucleares , Linfoma Difuso de Grandes Células B/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Receptores de Antígenos Quiméricos/genética
14.
Nat Genet ; 54(11): 1664-1674, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35927489

RESUMO

Recent advances in cancer characterization have consistently revealed marked heterogeneity, impeding the completion of integrated molecular and clinical maps for each malignancy. Here, we focus on chronic lymphocytic leukemia (CLL), a B cell neoplasm with variable natural history that is conventionally categorized into two subtypes distinguished by extent of somatic mutations in the heavy-chain variable region of immunoglobulin genes (IGHV). To build the 'CLL map,' we integrated genomic, transcriptomic and epigenomic data from 1,148 patients. We identified 202 candidate genetic drivers of CLL (109 new) and refined the characterization of IGHV subtypes, which revealed distinct genomic landscapes and leukemogenic trajectories. Discovery of new gene expression subtypes further subcategorized this neoplasm and proved to be independent prognostic factors. Clinical outcomes were associated with a combination of genetic, epigenetic and gene expression features, further advancing our prognostic paradigm. Overall, this work reveals fresh insights into CLL oncogenesis and prognostication.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Região Variável de Imunoglobulina/genética , Mutação , Prognóstico , Genômica
15.
Cancer Discov ; 12(11): 2666-2683, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35895872

RESUMO

Anticancer therapies have been limited by the emergence of mutations and other adaptations. In bacteria, antibiotics activate the SOS response, which mobilizes error-prone factors that allow for continuous replication at the cost of mutagenesis. We investigated whether the treatment of lung cancer with EGFR inhibitors (EGFRi) similarly engages hypermutators. In cycling drug-tolerant persister (DTP) cells and in EGFRi-treated patients presenting residual disease, we observed upregulation of GAS6, whereas ablation of GAS6's receptor, AXL, eradicated resistance. Reciprocally, AXL overexpression enhanced DTP survival and accelerated the emergence of T790M, an EGFR mutation typical to resistant cells. Mechanistically, AXL induces low-fidelity DNA polymerases and activates their organizer, RAD18, by promoting neddylation. Metabolomics uncovered another hypermutator, AXL-driven activation of MYC, and increased purine synthesis that is unbalanced by pyrimidines. Aligning anti-AXL combination treatments with the transition from DTPs to resistant cells cured patient-derived xenografts. Hence, similar to bacteria, tumors tolerate therapy by engaging pharmacologically targetable endogenous mutators. SIGNIFICANCE: EGFR-mutant lung cancers treated with kinase inhibitors often evolve resistance due to secondary mutations. We report that in similarity to the bacterial SOS response stimulated by antibiotics, endogenous mutators are activated in drug-treated cells, and this heralds tolerance. Blocking the process prevented resistance in xenograft models, which offers new treatment strategies. This article is highlighted in the In This Issue feature, p. 2483.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Humanos , Linhagem Celular Tumoral , Replicação do DNA , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Animais , Receptor Tirosina Quinase Axl
17.
Nat Commun ; 13(1): 898, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197475

RESUMO

Acral melanoma, the most common melanoma subtype among non-White individuals, is associated with poor prognosis. However, its key molecular drivers remain obscure. Here, we perform integrative genomic and clinical profiling of acral melanomas from 104 patients treated in North America (n = 37) or China (n = 67). We find that recurrent, late-arising focal amplifications of cytoband 22q11.21 are a leading determinant of inferior survival, strongly associated with metastasis, and linked to downregulation of immunomodulatory genes associated with response to immune checkpoint blockade. Unexpectedly, LZTR1 - a known tumor suppressor in other cancers - is a key candidate oncogene in this cytoband. Silencing of LZTR1 in melanoma cell lines causes apoptotic cell death independent of major hotspot mutations or melanoma subtypes. Conversely, overexpression of LZTR1 in normal human melanocytes initiates processes associated with metastasis, including anchorage-independent growth, formation of spheroids, and an increase in MAPK and SRC activities. Our results provide insights into the etiology of acral melanoma and implicate LZTR1 as a key tumor promoter and therapeutic target.


Assuntos
Melanoma , Neoplasias Cutâneas , Genômica , Humanos , Melanoma/patologia , Oncogenes , Neoplasias Cutâneas/patologia , Fatores de Transcrição/genética
18.
Biometrics ; 78(3): 1155-1167, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33914902

RESUMO

Feature selection is indispensable in microbiome data analysis, but it can be particularly challenging as microbiome data sets are high dimensional, underdetermined, sparse and compositional. Great efforts have recently been made on developing new methods for feature selection that handle the above data characteristics, but almost all methods were evaluated based on performance of model predictions. However, little attention has been paid to address a fundamental question: how appropriate are those evaluation criteria? Most feature selection methods often control the model fit, but the ability to identify meaningful subsets of features cannot be evaluated simply based on the prediction accuracy. If tiny changes to the data would lead to large changes in the chosen feature subset, then many selected features are likely to be a data artifact rather than real biological signal. This crucial need of identifying relevant and reproducible features motivated the reproducibility evaluation criterion such as Stability, which quantifies how robust a method is to perturbations in the data. In our paper, we compare the performance of popular model prediction metrics (MSE or AUC) with proposed reproducibility criterion Stability in evaluating four widely used feature selection methods in both simulations and experimental microbiome applications with continuous or binary outcomes. We conclude that Stability is a preferred feature selection criterion over model prediction metrics because it better quantifies the reproducibility of the feature selection method.


Assuntos
Microbiota , Algoritmos , Reprodutibilidade dos Testes
19.
Nat Genet ; 53(12): 1664-1672, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34857952

RESUMO

Although single-gene perturbation screens have revealed a number of new targets, vulnerabilities specific to frequently altered drivers have not been uncovered. An important question is whether the compensatory relationship between functionally redundant genes masks potential therapeutic targets in single-gene perturbation studies. To identify digenic dependencies, we developed a CRISPR paralog targeting library to investigate the viability effects of disrupting 3,284 genes, 5,065 paralog pairs and 815 paralog families. We identified that dual inactivation of DUSP4 and DUSP6 selectively impairs growth in NRAS and BRAF mutant cells through the hyperactivation of MAPK signaling. Furthermore, cells resistant to MAPK pathway therapeutics become cross-sensitized to DUSP4 and DUSP6 perturbations such that the mechanisms of resistance to the inhibitors reinforce this mechanism of vulnerability. Together, multigene perturbation technologies unveil previously unrecognized digenic vulnerabilities that may be leveraged as new therapeutic targets in cancer.


Assuntos
Fosfatase 6 de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/genética , Sistema de Sinalização das MAP Quinases , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Neoplasias/genética , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Ativação Enzimática , GTP Fosfo-Hidrolases/genética , Técnicas de Inativação de Genes , Humanos , Melanoma Experimental/genética , Melanoma Experimental/terapia , Proteínas de Membrana/genética , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/terapia , Proteínas Proto-Oncogênicas B-raf/genética
20.
BMC Genomics ; 22(Suppl 5): 518, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34789161

RESUMO

BACKGROUND: All diseases containing genetic material undergo genetic evolution and give rise to heterogeneity including cancer and infection. Although these illnesses are biologically very different, the ability for phylogenetic retrodiction based on the genomic reads is common between them and thus tree-based principles and assumptions are shared. Just as the different frequencies of tumor genomic variants presupposes the existence of multiple tumor clones and provides a handle to computationally infer them, we postulate that the different variant frequencies in viral reads offers the means to infer multiple co-infecting sublineages. RESULTS: We present a common methodological framework to infer the phylogenomics from genomic data, be it reads of SARS-CoV-2 of multiple COVID-19 patients or bulk DNAseq of the tumor of a cancer patient. We describe the Concerti computational framework for inferring phylogenies in each of the two scenarios.To demonstrate the accuracy of the method, we reproduce some known results in both scenarios. We also make some additional discoveries. CONCLUSIONS: Concerti successfully extracts and integrates information from multi-point samples, enabling the discovery of clinically plausible phylogenetic trees that capture the heterogeneity known to exist both spatially and temporally. These models can have direct therapeutic implications by highlighting "birth" of clones that may harbor resistance mechanisms to treatment, "death" of subclones with drug targets, and acquisition of functionally pertinent mutations in clones that may have seemed clinically irrelevant. Specifically in this paper we uncover new potential parallel mutations in the evolution of the SARS-CoV-2 virus. In the context of cancer, we identify new clones harboring resistant mutations to therapy.


Assuntos
COVID-19 , Neoplasias , Células Clonais , Humanos , Mutação , Neoplasias/genética , Filogenia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...